diff --git a/plan.md b/plan.md new file mode 100644 index 0000000..fa4ded0 --- /dev/null +++ b/plan.md @@ -0,0 +1,57 @@ +# Vector Search Application Implementation Plan + +## Overview +I've completed the planning phase for implementing a vector embedding database for USA postal addresses using the "sentence-transformers/all-MiniLM-L6-v2" model. The solution will be a console application that accepts address input, generates embeddings, and stores them in a dockerizable vector database. + +## Key Components and Decisions + +### 1. Vector Database Solution +- **Selected**: Qdrant (free to self-host and dockerizable) +- **Rationale**: + - Fully open-source and free for self-hosting + - Excellent Docker support with official Docker images + - Good performance for vector similarity search + - Supports various vector similarity metrics (cosine, euclidean, etc.) + - Active community and good documentation + +### 2. Embedding Model Implementation +- **Model**: "sentence-transformers/all-MiniLM-L6-v2" +- **Approach**: Using Hugging Face's .NET library (HuggingFace.NET) +- **Rationale**: + - Optimized for .NET environments + - Good performance and accuracy + - Active maintenance and community support + - Compatible with the existing .NET 8 project structure + +### 3. System Architecture +``` +┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐ +│ Console App │ │ Embedding API │ │ Vector DB │ +│ │ │ (Hugging Face) │ │ (Qdrant) │ +│ Address Input │───▶│ Generate Embed │───▶│ Store/Query │ +│ │ │ (all-MiniLM) │ │ │ +└─────────────────┘ └──────────────────┘ └─────────────────┘ +``` + +### 4. Console Application Flow +1. User enters postal address via console input +2. Address is processed through the embedding model +3. Generated embedding is stored in Qdrant vector database +4. Console displays the generated embedding as confirmation +5. Application continues to accept new addresses + +### 5. Implementation Details +- **Project Structure**: Will extend the existing VectorSearchApp project +- **Database Integration**: Qdrant client library for .NET +- **Embedding Generation**: Hugging Face .NET library for sentence transformers +- **Data Model**: Address (text) → Embedding (vector) mapping +- **Dockerization**: Qdrant container with persistent storage + +### 6. Technical Requirements +- .NET 8 runtime +- Docker for containerization +- Qdrant vector database (containerized) +- Hugging Face .NET libraries +- Vector search capabilities for similarity queries + +This plan provides a solid foundation for implementing the vector search application with all specified requirements met. \ No newline at end of file