Created a plan to get started.
This commit is contained in:
57
plan.md
Normal file
57
plan.md
Normal file
@@ -0,0 +1,57 @@
|
|||||||
|
# Vector Search Application Implementation Plan
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
I've completed the planning phase for implementing a vector embedding database for USA postal addresses using the "sentence-transformers/all-MiniLM-L6-v2" model. The solution will be a console application that accepts address input, generates embeddings, and stores them in a dockerizable vector database.
|
||||||
|
|
||||||
|
## Key Components and Decisions
|
||||||
|
|
||||||
|
### 1. Vector Database Solution
|
||||||
|
- **Selected**: Qdrant (free to self-host and dockerizable)
|
||||||
|
- **Rationale**:
|
||||||
|
- Fully open-source and free for self-hosting
|
||||||
|
- Excellent Docker support with official Docker images
|
||||||
|
- Good performance for vector similarity search
|
||||||
|
- Supports various vector similarity metrics (cosine, euclidean, etc.)
|
||||||
|
- Active community and good documentation
|
||||||
|
|
||||||
|
### 2. Embedding Model Implementation
|
||||||
|
- **Model**: "sentence-transformers/all-MiniLM-L6-v2"
|
||||||
|
- **Approach**: Using Hugging Face's .NET library (HuggingFace.NET)
|
||||||
|
- **Rationale**:
|
||||||
|
- Optimized for .NET environments
|
||||||
|
- Good performance and accuracy
|
||||||
|
- Active maintenance and community support
|
||||||
|
- Compatible with the existing .NET 8 project structure
|
||||||
|
|
||||||
|
### 3. System Architecture
|
||||||
|
```
|
||||||
|
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
|
||||||
|
│ Console App │ │ Embedding API │ │ Vector DB │
|
||||||
|
│ │ │ (Hugging Face) │ │ (Qdrant) │
|
||||||
|
│ Address Input │───▶│ Generate Embed │───▶│ Store/Query │
|
||||||
|
│ │ │ (all-MiniLM) │ │ │
|
||||||
|
└─────────────────┘ └──────────────────┘ └─────────────────┘
|
||||||
|
```
|
||||||
|
|
||||||
|
### 4. Console Application Flow
|
||||||
|
1. User enters postal address via console input
|
||||||
|
2. Address is processed through the embedding model
|
||||||
|
3. Generated embedding is stored in Qdrant vector database
|
||||||
|
4. Console displays the generated embedding as confirmation
|
||||||
|
5. Application continues to accept new addresses
|
||||||
|
|
||||||
|
### 5. Implementation Details
|
||||||
|
- **Project Structure**: Will extend the existing VectorSearchApp project
|
||||||
|
- **Database Integration**: Qdrant client library for .NET
|
||||||
|
- **Embedding Generation**: Hugging Face .NET library for sentence transformers
|
||||||
|
- **Data Model**: Address (text) → Embedding (vector) mapping
|
||||||
|
- **Dockerization**: Qdrant container with persistent storage
|
||||||
|
|
||||||
|
### 6. Technical Requirements
|
||||||
|
- .NET 8 runtime
|
||||||
|
- Docker for containerization
|
||||||
|
- Qdrant vector database (containerized)
|
||||||
|
- Hugging Face .NET libraries
|
||||||
|
- Vector search capabilities for similarity queries
|
||||||
|
|
||||||
|
This plan provides a solid foundation for implementing the vector search application with all specified requirements met.
|
||||||
Reference in New Issue
Block a user